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Abstract
Dual-energy X-ray absorptiometry (DXA) scans are one of the most frequently used imaging techniques for calculating bone mineral
density, yet calculating fracture risk using DXA image features is rarely performed. The objective of this study was to combine deep
neural networks, together with DXA images and patient clinical information, to evaluate fracture risk in a cohort of adults with at least
one known fall and age-matched healthy controls. DXA images of the entire body as, well as isolated images of the hip, forearm, and
spine (1488 total), were obtained from 478 fallers and 48 non-faller controls. A modeling pipeline was developed for fracture risk pre-
diction using the DXA images and clinical data. First, self-supervised pretraining of feature extractors was performed using a small
vision transformer (ViT-S) and a convolutional neural network model (VGG-16 and Resnet-50). After pretraining, the feature extractors
were then paired with a multilayer perceptron model, which was used for fracture risk classification. Classification was achieved with
an average area under the receiver-operating characteristic curve (AUROC) score of 74.3%. This study demonstrates ViT-S as a prom-
ising neural network technique for fracture risk classification using DXA scans. The findings have future application as a fracture risk
screening tool for older adults at risk of falls. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American
Society for Bone and Mineral Research.
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Introduction

Fractures in older adults are common and often lead to long
rehabilitation periods,[1] reduced quality of life,[2] and high

cost to social and healthcare systems.[3,4] Falls are a strong pre-
dictor of imminent fractures in older men and women.[5] They
are themost frequent cause of unintentional injuries, particularly
among older adults (aged ≥65 years), and are the leading cause
of emergency admission, loss of functional ability, indepen-
dence, quality of life, and injury-related death.[6] Identifying fac-
tors that may associate an individual with a higher risk of falls

and fracture has important implications for preventative care,
but has remained a long-standing challenge.

DXA scans are one of the most commonly used imaging tech-
niques for estimating bone mineral density (BMD),[7] because
scanning is typically low cost, with low radiation dose, and can
be used to image the entire body at once. Although BMD data
from DXA scans are used to identify patients with established
osteoporosis, the assessment of fracture risk using these data
cannot be discerned directly and depend on proprietary model-
ing or data analytics approaches.[8] Other fracture risk calculation
algorithms such as Fracture Risk Assessment Tool (FRAX)[9] and
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Garvan[10] typically combine factors such as patient demo-
graphics, past fracture history, and health status with BMD data
(see[11] for a review); however, these approaches do not explicitly
consider region-specific bone structure information, nor other
biomarkers that may be associated with bone quality, including
vitamin D and calcium levels.

Machine learning strategies, such as deep neural network
models, have played a role in the identification of musculoskele-
tal conditions using images, including automated tumor classifi-
cation from magnetic resonance imaging (MRI) and computed
tomography (CT), detection of spinal fracture, and calculation
of bone age and fragility.[12] A significant challenge in develop-
ing these image processing methods has been the availability
of large image datasets with relevant fracture risk labels, which
are required for effective model training and fracture risk predic-
tion. Ultimately, small image datasets may not sufficiently repre-
sent the distribution of previous fractures throughout the body
to allow accurate and robust, automated fracture classification.

Augmentation of image datasets using approaches such as
synthetic minority oversampling, which repeatedly resamples
and combines images from an existing dataset, has been used
to overcome the challenges of model training using low sample
sizes[13]; however, such approaches assume that there exists a
smooth, continuous distribution of labels, which may not be
the case in reality and may ultimately result in model training
using erroneous labels. For instance, the average of two images
with one fracture in each may be an image with two fractures,
though the label assigned would be representative of a single
fracture. Self-supervised learning has been recently proposed
as a strategy for model training in the absence of large, labeled
datasets and avoids these label distribution assumptions. An
input dataset is used to train a neural network model without
using label information to identify low-level features of the data,
such as edges, curves, and contours, which can make the final
classification task more efficient.[14] Self-supervised learning pre-
training has also been observed to improve downstream classifi-
cation accuracy in the absence of a large, labeled dataset to
extract image features from.[15] This approach has shown prom-
ise in medical image classification of label sparse datasets,
including chest X-rays and skin dermatology images,[16] but to
date has not been applied in fracture risk classification using
DXA images.

The objective of this study was to employ artificial neural
networks, together with DXA images and patient clinical infor-
mation, to evaluate fracture risk in a cohort of fallers and age-
matched healthy controls. This study proposes a unique
approach to automatic fracture risk classification using bone
structural information derived from DXA images.

Subjects and Methods

Study population

Data from 526 community-dwelling older adults presenting to a
Falls and Fracture Clinic in Melbourne, Australia, between October
2016 and January 2022 were used for cross-sectional analysis.
Inclusion criteria were: aged ≥65 years; able to mobilize indepen-
dently or using a gait aid (walking stick, frame, etc.); no severe cog-
nitive deficits (Mini-Mental State Exam >18); and at least one risk
factor for falls or fractures. This included 196 individuals with at
least one fall (mean age: 77.3 � 6.7 years, mean weight:
70.4 � 15.7 kg), and 282 individuals with two or more falls (mean
age: 77.8 � 7.2 years, mean weight: 74.1 � 12 kg). In addition,

48 age-matched controls with no fall history were recruited (mean
age: 77.6 � 6.1 years, meanweight: 72.8 � 18.6 kg). In this cohort,
111 patients had no fracture history, 329 patients had one fracture
and 92 patients had two or more fractures. The study was
approved by the Western Health Low-Risk Ethics Panel at Sun-
shine Hospital (ID: QA2018.106_44499). Written informed consent
was waived as data was collected as part of standard care.

Falls and fracture definitions

Falls were defined as “unexpected and involuntary loss of bal-
ance, causing the person an undesired contact with the
ground.”[17–19] The occurrence of falls in participants was
assessed retrospectively by asking each participant (i) whether
they had suffered a fall and, (ii) the number of falls experienced
in the year before the day of the assessment. In the present
study, only historic osteoporotic fragility fractures occurring in
the previous 5 years were part of the inclusion criteria, defined
as low-trauma such as the forces equivalent to a fall from stand-
ing height or less.[20] The number of self-reported fractures were
documented and subsequently validated against medical
records, including discharge summaries, radiology reports, and
referral letters. Participants reporting fractures that could not
be verified by medical records were excluded from the analysis.
Fracture risk was subsequently categorized for each subject
based on fracture history and included (i) low fracture risk—no
prior fracture; (ii) moderate fracture risk—one past fracture;
and (iii) high fracture risk—two or more previous fractures. This
fracture risk categorization was considered independent to fall
risk or the number of falls experienced by participants, which
were not predicted in the present study.[21]

Image acquisition and analysis (DXA)

BMD and body composition (fat and lean mass) were assessed
using a Hologic Horizon DXA machine (Hologic Inc., Bedford,
MA, USA). BMD of the hip and lumbar spine were estimated in
array mode according to the manufacturer’s protocols and soft-
ware. Using the DXA machine custom analysis software, stan-
dard landmarks (scapulohumeral joint space and femoral neck)
were identified on whole-body scans, and limbs were separated
from the corpus and pelvis. Appendicular lean mass (ALM) was
subsequently calculated for each region. Daily and monthly cali-
bration of the DXA machine for BMD, muscle and fat masses
were carried out using the spine and whole-body phantoms. A
single experienced image analysis specialist carried out all imag-
ing and image analyses. DXA images of the entire body, as well
as isolated images of the hip, forearm, and spine, were obtained
from all faller and non-faller subjects. This included 1488 images,
which excluded instances where patients could not assume the
required positions or where images were excessively noisy.
Images were exported in Digital Imaging and Communications
in Medicine (DICOM) format, manually cropped to include only
relevant anatomical information, and resized to a 224 � 224
pixel image for subsequent modeling.

Artificial neural network development

Artificial neural networks were developed to classify patient DXA
images with and without tabular clinical data into the three
fracture-risk categories. To achieve this, images from the hips
of subjects across the entire image dataset were first randomized
then split into train, validate, and test image sets comprising
80%, 10%, and 10% of the images, respectively. During the
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training, validation accuracies were obtained after each training
epoch and themodel saved at the epoch with the highest valida-
tion accuracy. The results reportedwere calculated based on pre-
dictions provided by that model when the hold-out test image
set was provided as input.

Two types of artificial neural network models were employed
for fracture risk classification: (i) Convolutional Neural Networks
(ConvNets) and (ii) small vision transformer networks (ViT-S)
(Fig. 1A–C). ConvNets utilize the pixel geometry of images to
extract features by sliding a learnable template along the two
axes of the images. ViT-S, an emerging technique that rivals Con-
vNets in power to extract image features, uses a more general
feature extractor than the template-matching approach of Con-
vNets calledmultihead self-attention. Building on sequence data
processing methods commonly used in language processing
(NLP), ViT-S models adopt a linear transformation instead of
deep convolutional layers and leverage the two-dimensional
sequential nature of images to extract image features (see Sup-
plementary Material).

To improve model classification accuracy given the relatively
low data sample sizes, two different self-supervised pretraining
approaches were employed.[22,23] Specifically, Momentum Con-
trastive Learning (MoCo) and Distillation with No Labels (DINO)

(Fig. 1). To represent ConvNets, two widely used architectures
were adopted: VGG-16 and ResNet-50 model architectures (see
Supplementary Material for details). Transfer learning and pre-
training involves the use of a large unlabeled dataset for self-
supervised feature-extractor learning. Our pretrained feature-
extractor used the full set of available DXA images from all
modalities without label information specifying fracture history.
Once the feature-extractor was initially pretrained with self-
supervised learning, a classifier headmade up of aMultilayer Per-
ceptron (MLP) network was used to complete the classification
model. Fine-tuning of theMLP classification headwas performed
using the fracture risk labels associated with only the hip images,
because previous studies have employed BMD of the femoral
neck in calculations of fracture risk.[24] For both MoCo and DINO,
standard hyperparameters recommended in the software librar-
ies were employed (see Table S1, Supplementary Material for fur-
ther information).

Integration of clinical data

The effectiveness of using subject-specific clinical data for frac-
ture risk prediction was also evaluated, and this included subject
vitamin-D level,[25] calcium level,[26] height,[27] and the ratio of

(A)

(B)

Fig. 1. Artificial neural network modeling and validation pipeline for fracture risk prediction (A), inner model architecture allowing for image and non-
image data to be combined into fracture risk group classifications (B), and the two strategies used for pretraining feature extractors using self-supervised
learning (C). Each dataset derived from the complete DXA image superset of fracture patients and healthy controls were spit into a training sample (80%),
validation sample (10%) and a test sample (10%). Themodel pretraining feature extraction strategies employed were Small Vision Transformer (ViT-S) and
Distillation with No Labels (DINO), while classification was performed using Convolutional Neural Network Models (VGG-16 and ResNet-50) and Momen-
tum Contrastive Learning (MoCo). After pretraining, the feature extractors of the trained ViT-S and VGG-16/ResNet-50 neural networks were then paired
with a multi-layer perceptron (MLP), which was used for fracture risk classification. Tabular clinical data were also included in the classifier using an MLP
extractor.
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appendicular lean mass to body mass index (ALM/BMI)[28] (see
Supplementary Material for calculation of vitamin D and calcium
levels). These variables were included because of their known
association with fracture likelihood (see Supplementary Mate-
rial). DXA-derived information such as BMD and T values for the
hip and femoral neck were excluded, because relevant bone
structural information was derived directly from DXA images
using the neutral networks. The clinical data were fed into a
MLP model with one hidden layer, and fracture risk classification
was repeated.

To evaluate change in model performance with the integra-
tion of both DXA images and clinical data, the highest perform-
ing model trained only on imaging data was selected and used
for subsequent analysis. Model performance was achieved by
passing the clinical data through a trainable MLP in order to learn
the optimal feature combinations. The output of the MLP with
the image latent features were obtained through the feature
extraction backbone. The concatenated features were then
passed through the second MLP, which acted as a classification
head (Fig. 1B). Although the image feature extraction back-end
was frozen to retain the latent features learned through pretrain-
ing, both MLP models were trained through back-propagation.
By employing the first MLP model, we effectively increased the
network depth trained on the clinical data without loss of infor-
mation from the extracted image features using the second
MLP head.

Artificial neural network model evaluation and validation

To benchmark the performance of the proposed neural network
workflows, we used the VGG-16 model pretrained on the Ima-
genet [VGG-16 (Imagenet)] natural image dataset as the baseline
fracture classification model (model 1), because this modeling
approach is most commonly used in medical image analysis.
Our pilot study also showed that VGG-16 generally outper-
formed its later incarnation, VGG-19, possibly owing to the smal-
ler number of parameters in the VGG-16model, whichmay be an
advantage with small datasets. This baseline model was then
compared to the VGG-16 model pretrained on the DXA images
using the MoCo strategy [VGG-16 (MoCo)] (model 2), Resnet-50
model with the MoCo pretraining [Resnet-50(MoCo)] (model 3),
the Vision Transformer model pretrained with the DINO strategy
[ViT (DINO)] (model 4), the use of clinical data only (model 5), and

the combination of clinical data with the best-performing image
processing strategy [ViT (DINO) + clinical data] (model 6). In all
cases where pretraining was used, random initializations of the
feature-extractor was performed. Class-specific reweighting
adapted from Seneviratne et al.[29] was used to overcome the
class-imbalances between the three classes (see Supplementary
Material for equation). The self-supervised pretraining helped to
mitigate overfitting following reweighting. The accuracy of each
neural network’s fracture-risk group predictions was measured
using the F1 Score with microaveraging (F1 Micro) and the area
under the receiver-operating characteristic curve (ROC-AUC)
score.

To validate the model performance and sensitivity to random
sampling, we conducted a 10-fold cross-validation on the high-
est performingmodel. This cross-validation was performed using
only the highest-performing model in order to reduce neural
network training time. To achieve this, we split the complete
dataset into two random groups of data, a train-validate set com-
prising 90% of the images, and holdout test set with the remain-
ing 10% of the images. The train-validate set was then further
split into validation and training sets by randomly sampling
images such that 10% of the full image set was in the validation
set and 90% were in the training set. This train-validate split pro-
cess was repeated nine times, at each time training a newmodel
with the training set and selecting the best model iteration with
the validation test. Once trained, each of the models were tested
on the held-out test set.

Results

The accuracy of classifying DXA image data into fracture-risk
groups using the baseline model [VGG-16 (Imagenet)] (model
1) was 66.7% (F1-Micro) and 69.1% (ROC-AUC) (Table 1). With
class-specific reweighting, the ROC-AUC was reduced to 64.8%
with no change to the F1 scores. The VGG-16 (MoCo) model
(model 2) had similar F1 scores, and the unbalanced and reba-
lanced scenarios resulted in ROC-AUC scores of 58.8% and
47.1%, respectively. In contrast, Resnet-50 (MoCo) (model 3)
had a significant change when class rebalancing was applied,
with the ROC-AUC scores increasing from 60.7% to 72.0%, and
the F1 Score increasing from 63.6% to 66.7%. In model 3, we also
observed that the class-specific scores show less trivial

Table 1. Fracture risk group classification performance for artificial neural network models used in the present study, including F1 and
area under the receiver-operating characteristics curve (in parentheses)

Balanced Unbalanced

Low risk
Moderate

risk High risk Average Low risk
Moderate

risk High risk Average

Clinical data only 0.0 (61.1) 80.0 (66.9) 0.0 (66.4) 66.7 (64.8) 0.0 (61.1) 80.0 (66.9) 0.0 (67.1) 66.7 (65.1)
VGG16 (Imagenet) 0.0 (62.3) 80.0 (69.4) 0.0 (62.9) 66.7 (64.9) 0.0 (69.1) 80.0 (66.1) 0.0 (72.1) 66.7 (69.1)
VGG16 (MoCo) 0.0 (56.8) 80.0 (46.7) 0.0 (37.9) 66.7 (47.1) 0.0 (60.5) 80.0 (74.4) 0.0 (41.4) 66.7 (58.8)
Resnet 50 (MoCo) 25.0 (66.7) 79.2 (69.4) 0.0 (80.0) 66.7 (72.0) 0.0 (56.2) 77.8 (68.0) 0.0 (57.9) 63.6 (60.7)
Resnet 50 (DINO) 0.0 (48.8) 15.4 (42.1) 29.4 (37.9) 21.2 (42.9) 0.0 (63.0) 0.0 (56.2) 26.3 (86.4) 15.2 (68.5)
ViT-S (MoCo) 0.0 (71.6) 80.0 (58.7) 0.0 (52.9) 66.7 (61.0) 0.0 (67.9) 80.0 (62.8) 0.0 (57.1) 66.7 (62.6)
ViT-S (DINO) 33.3 (68.5) 57.9 (69.0) 20.0 (78.6) 45.5 (72.0) 15.4 (54.3) 69.6 (61.6) 28.6 (71.4) 54.5 (62.4)
ViT-S (DINO) + Clinical
data

37.5 (67.9) 80.0 (72.7) 0.0 (82.1) 63.6 (74.3) 25.0 (66.7) 75.6 (72.3) 0.0 (86.4) 57.6 (75.1)

Note: Scores for eachmodel were calculated using test datasets on the basis of thatmodel’s ability to predict fracture risk as either high, moderate or low
risk. Class-specific fracture risk classification calculated for each model configuration are listed as Low Risk, Moderate Risk, and High-Risk, and average
scores across classes are provided.
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predictions when rebalancing is applied i.e., the capacity to pre-
dict all images in a single class.

In contrast, ViT-S + DINO (model 4) had an unbalanced classi-
fication performance of 54.5% (F1) and 62.4% (ROC-AUC). With
rebalancing, this classification performance became 45.5% and
72.0% for F1 and ROC-AUC, respectively. This score is compara-
ble with the performance of model 3; however, from the class-
specific scores, it was observed that ViT-S + DINO predictions
were less trivial. Using only the clinical data for classification
(model 5), a fracture risk classification performance of 66.7%
(F1) and 65.1% (ROC-AUC) was obtained. The integration of both
DXA images and clinical data (ViT-S + DINO, model 6) yielded a
performance of 57.6% (F1) and 75.1% (ROC-AUC) for the unbal-
anced case, and 63.6% (F1) and 74.3% (ROC-AUC) for the class-
weighted case, demonstrating an increase of F1 score with no
significant drop in the ROC-AUC scores. Although this was the
highest performing neural network model, the class-specific F1
scores showed that the introduction of the clinical variables
increased the triviality of the predictions through 0% F1 scores
for the high-risk category.

The k-fold cross-validation results of the ViT-S + DINO model
when using DXA images and clinical data demonstrated a mean
F1 score of 62.6% (standard deviation: 3.2%) andmean ROC-AUC
score of 74.2% (standard deviation: 3.0%).

Discussion

The present study showed that artificial neural networks were
able to correctly categorize fracture risk using DXA scans with a
ROC-AUC accuracy of up to 74.3% (Table 1). This high-
performance neural network was achieved using the ViT-S
model and the DINO pretraining strategy, combining both DXA
images with tabulated patient clinical data. This finding demon-
strates the utility and importance of combining different data
sources and formats in classification of fracture risk. Although
F1 score was mostly stable throughout all experiments, this
may be a result of the class imbalances which the class-reweight-
ing strategy mitigated, as demonstrated by an increase in
ROC-AUC score. Specifically, the ResNet + MoCo scenario

showed a classification performance improvement of�12%with
the class re-weighting strategy, underscoring the importance of
class rebalancing in highly unbalanced datasets. Despite
improvement in ROC-AUC scores, for most of the configurations
the predictions were trivial, like due to a label imbalance. How-
ever, with pretraining using both ResNet + MoCo and ViT-S
+ DINO, the class-specific F1 Scores resulted in less trivial
predictions.

Although CNNs have a built-in bias (i.e., the localness and
translational invariance of image features), transformers have a
more general bias making themmore difficult to train with smal-
ler datasets. As such, transformers may be better equipped to
identify complex features in data when providedwith sufficiently
large datasets. In the case where such large datasets are not
available, transformers have been shown to improve model per-
formance when pretraining is employed.[30] The results in the
present study are consistent with this, showing that even with-
out the inductive bias of convolutional neural networks, pretrain-
ing may provide a means to extract useful image features from
small or label-sparse datasets.

This study also showed that integration of clinical information
to the deep-learning pipeline improved the model performance
when compared to use of DXA images alone. The stability of the
models investigated in this study was demonstrated by the high
mean value demonstrated in the k-fold cross-validation per-
formed on the most performant model, and the relatively low
standard deviations.

Overfitting is commonly encountered in artificial neural net-
works where the label distributions are imbalanced. However,
we observed that in the case where pretraining techniques and
ViT-S are used, the overfitting issue is alleviated to a large extent.
This is demonstrated by the ViT-S (DINO) configuration having
the highest non-trivial prediction results in terms of the class-
specific F1 and ROC-AUC scores, i.e., this model did not simply
output the label of the most abundant class when class imbal-
ances were present.

Classification of fracture risk is clinically relevant, since accu-
rate prediction of fracture events could trigger prompt preven-
tive strategies, which have demonstrated to be effective in
reducing the number of events and their devastating conse-
quences.[31] This is particularly relevant in older fallers at higher
risk of bone fracture who may stand to benefit from tailored
intervention. However, classification of fracture risk is challeng-
ing in clinical practice because some of themost commonly used
fracture risk algorithms do not include falls history. In this study,
we formulated our fracture risk-groups based on fracture history.
This risk score differs from FRAX, which also includes past frac-
ture history, as well as other clinical and demographic data,
and represents a 10-year probability of amajor osteoporotic frac-
ture. Nonetheless, the fracture risk groups employed in this study
show a similar increasing trend in fracture risk from low-risk to
high-risk categories (Fig. 2), indicating that fracture history is a
strong determinate of fracture risk.

The results of this study show that although ConvNets have a
built-in inductive bias catering for image recognition tasks, the
ViT-S models showed better overall improvement of perfor-
mance compared to ConvNets. ConvNets produced more stable
results, possibly due to built-in inductive bias, which eliminates
data hunger to an extent. However, the ViT-S feature-extractors
performed considerably better when class-imbalances are miti-
gated. This underscores the application of ViT-S in settings where
there are considerable class imbalances, together with a simple
reweighting to improve gradient propagation.

Fig. 2. FRAX data representing hip fracture risk (blue) and absolute risk
of major osteoporotic fractures (red).
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As an area for further research beyond this study, the capacity for
neural networks to identify region-specific (anatomical) areas asso-
ciated with fracture on the DXA scans can be visualized using
gradient-based class activation maps (CAMs) (see Supplementary
Material for details). In a preliminary exploratory study, we assessed
EigenGradCAM (Fig. 3A) and EigenCAM (Fig. 3B) CAMs and showed
that the femoral neck had high relevance in classifying moderate
fracture risk. This may be due to the hip being a frequent fracture
site in older adults, and the isolated hip DXA images having com-
paratively higher resolution thanwhole-body DXA images and thus
being most strongly associated with fracture risk.

We also observed from the CAM results that, for moderate frac-
ture risk prediction, the inferred regions of interest generally
resided within the bony anatomy visible on the DXA images. This
may be due to the higher capacity of ViT-S models for foreground
extraction, and themodel treating bony regions of the DXA images
as foreground. It is also likely that the neural networkmodel perfor-
mance was improved by learned focused on signs of previous frac-
tures present in the bones such as fracture lines, and presence of
metal implants. In reality, fracture risk may be affected by more
nuanced features such as the mechanical properties of the bones
(length/cross-section area), muscle architecture, and appendicular
leanmass of subjects, which cannot be captured fromDXA images
alone. In future, it would be beneficial to extract both foreground
and background segmentations through self-supervised learning
to be incorporated into the classification tasks. The use of a larger,
higher resolution image dataset, or alternative imaging modalities
for soft tissue to supplement the DXA scans, may also further
improve classification accuracy.

Integration of tabular patient clinical data to the learning pipe-
line produced a considerable improvement in class imbalance

mitigation. However, the performance did not improve signifi-
cantly when compared to the improvements gained from the
simple reweighting techniques. This suggest that it may be use-
ful to include relevant clinical information in predictivemodels of
fracture risk. Future research ought to focus on identifying the
most relevant patient clinical variables to model when investi-
gating the effectiveness of data preprocessing techniques to
achieve improved classification performance.

There are limitations of the present study that ought to be
considered. The DXA scans were of low resolution (390 � 261
pixels on average), making the self-supervised learning of image
features challenging. The small sample size of the dataset also
may explain the limited improvements observed when clinical
data were included, because the neural network parameters
may require more data to be trained when more input variables
are presented. In addition, the analysis was performed using
two-dimensional images, and further improvements in classifica-
tion performance may be achieved by incorporating use of
three-dimensional modeling techniques for fracture prediction,
such as finite element modeling.[32] Finally, we performed our
analysis on one complete dataset, which was validated using
an internal hold-out dataset and k-fold cross-validation, thusmit-
igating model overfitting. Nonetheless, future studies ought to
assess model predictive capacity using a variety of different data
sources to further validation of classification performance.

This study shows that artificial neural networks, together with
DXA images and patient clinical data in fallers, can be used to
classify fracture risk with high levels of accuracy beyond that of
the DXA images or clinical data alone. In future research, larger
high-resolution image datasets may further improve fracture risk
assessment and provide scope for gradient-based class

(A)

(B)

Fig. 3. Visualization of EigenGradCAM (A) and GradCAM results (B) illustrating association between fracture group classification and DXA image features
for moderate fracture risk subjects. Given are the three highest confidence images with labels predicted for correct classifications, which ranged from 85%
to 92% confidence.
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activation maps for identifying image-based regions of interest
on DXA scans that are indicative of fracture risk.
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